104 research outputs found

    Cygnus A super-resolved via convex optimisation from VLA data

    Get PDF
    We leverage the Sparsity Averaging Reweighted Analysis (SARA) approach for interferometric imaging, that is based on convex optimisation, for the super-resolution of Cyg A from observations at the frequencies 8.422GHz and 6.678GHz with the Karl G. Jansky Very Large Array (VLA). The associated average sparsity and positivity priors enable image reconstruction beyond instrumental resolution. An adaptive Preconditioned Primal-Dual algorithmic structure is developed for imaging in the presence of unknown noise levels and calibration errors. We demonstrate the superior performance of the algorithm with respect to the conventional CLEAN-based methods, reflected in super-resolved images with high fidelity. The high resolution features of the recovered images are validated by referring to maps of Cyg A at higher frequencies, more precisely 17.324GHz and 14.252GHz. We also confirm the recent discovery of a radio transient in Cyg A, revealed in the recovered images of the investigated data sets. Our matlab code is available online on GitHub.Comment: 14 pages, 7 figures (3/7 animated figures), accepted for publication in MNRA

    Bayesian radio interferometric imaging with direction-dependent calibration

    Full text link
    Context: Radio interferometers measure frequency components of the sky brightness, modulated by the gains of the individual radio antennas. Due to atmospheric turbulence and variations in the operational conditions of the antennas these gains fluctuate. Thereby the gains do not only depend on time but also on the spatial direction on the sky. To recover high quality radio maps an accurate reconstruction of the direction and time-dependent individual antenna gains is required. Aims: This paper aims to improve the reconstruction of radio images, by introducing a novel joint imaging and calibration algorithm including direction-dependent antenna gains. Methods: Building on the \texttt{resolve} framework, we designed a Bayesian imaging and calibration algorithm utilizing the image domain gridding method for numerically efficient application of direction-dependent antenna gains. Furthermore by approximating the posterior probability distribution with variational inference, our algorithm can provide reliable uncertainty maps. Results: We demonstrate the ability of the algorithm to recover high resolution high dynamic range radio maps from VLA data of the radio galaxy Cygnus A. We compare the quality of the recovered images with previous work relying on classically calibrated data. Furthermore we compare with a compressed sensing algorithm also incorporating direction-dependent gains. Conclusions: Including direction-dependent effects in the calibration model significantly improves the dynamic range of the reconstructed images compared to reconstructions from classically calibrated data. Compared to the compressed sensing reconstruction, the resulting sky images have a higher resolution and show fewer artifacts. For utilizing the full potential of radio interferometric data, it is essential to consider the direction dependence of the antenna gains.Comment: 13 pages, 9 figure

    Late-time VLA reobservations rule out ULIRG-like host galaxies for most pre-Swift long-duration gamma-ray bursts

    Get PDF
    We present new Jansky Very Large Array observations of five pre-Swift gamma-ray bursts for which an ultraluminous [star formation rate (SFR) > 100 M⊙; yr-1] dusty host galaxy had previously been inferred from radio or submillimetre observations taken within a few years after the burst. In four of the five cases, we no longer detect any source at the host location to limits much fainter than the original observations, ruling out the existence of an ultraluminous galaxy hosting any of these gamma-ray bursts (GRBs). We continue to detect a source at the position of GRB 980703, but it is much fainter than it was a decade ago and the inferred radio SFR (~80M⊙) is relatively modest. The radio flattening at 200-1000 d observed in the light curve of this GRB may have been caused by a decelerating counterjet oriented 180 deg away from the viewer, although an unjetted wind model can also explain the data. Our results eliminate all well-established ultraluminous infrared galaxies (ULIRGs) among the pre-Swift host population. They also rule out all cases for which an unobscured GRB was found in a galaxy dominated by heavily obscured star formation. When GRBs do occur in ULIRGs, the afterglow is almost always observed to be heavily obscured, consistent with the large dust opacities and high dust covering fractions characteristic of these systems. © 2016 The Authors

    The highest frequency detection of a radio relic : 16 GHz AMI observations of the 'Sausage' cluster

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society: Letters. © 2014 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We observed the cluster CIZA J2242.8+5301 with the Arcminute Microkelvin Imager at 16 GHz and present the first high radio-frequency detection of diffuse, non-thermal cluster emission. This cluster hosts a variety of bright, extended, steep-spectrum synchrotron-emitting radio sources, associated with the intracluster medium, called radio relics. Most notably, the northern, Mpc-wide, narrow relic provides strong evidence for diffusive shock acceleration in clusters. We detect a puzzling, flat-spectrum, diffuse extension of the southern relic, which is not visible in the lower radio-frequency maps. The northern radio relic is unequivocally detected and measures an integrated flux of 1.2 ± 0.3 mJy. While the low-frequency (<2 GHz) spectrum of the northern relic is well represented by a power law, it clearly steepens towards 16 GHz. This result is inconsistent with diffusive shock acceleration predictions of ageing plasma behind a uniform shock front. The steepening could be caused by an inhomogeneous medium with temperature/density gradients or by lower acceleration efficiencies of high energy electrons. Further modelling is necessary to explain the observed spectrum.Peer reviewe

    Puzzling large-scale polarization in the galaxy cluster Abell 523

    Get PDF
    Large-scale magnetic fields reveal themselves through diffuse synchrotron sources observed in galaxy clusters such as radio halos. Total intensity filaments of these sources have been observed in polarization as well, but only in three radio halos out of about one hundred currently known. In this paper we analyze new polarimetric Very Large Array data of the diffuse emission in the galaxy cluster Abell 523 in the frequency range 1-2 GHz. We find for the first time evidence of polarized emission on scales of ~ 2.5 Mpc. Total intensity emission is observed only in the central part of the source, likely due to observational limitations. To look for total intensity emission beyond the central region, we combine these data with single-dish observations from the Sardinia Radio Telescope and we compare them with multi-frequency total intensity observations obtained with different instruments, including the LOw Frequency ARray and the Murchison Widefield Array. By analysing the rotation measure properties of the system and utilizing numerical simulations, we infer that this polarized emission is associated with filaments of the radio halo located in the outskirts of the system, in the peripheral region closest to the observer.Comment: 14 pages, 12 figures, accepted for publication on MNRA

    Spectral Index of the Filaments in the Abell 523 Radio Halo

    Get PDF
    The galaxy cluster Abell 523 hosts a radio halo characterized by the presence of two filaments transversely located with respect to the cluster merger axis. In this paper, we present a spectral index image of these filaments between 1.410 and 1.782 GHz obtained with Jansky Very Large Array observations. We find a steepening of the spectral index of the filaments at frequencies 1.4 GHz and an indication that bright patches are characterized by flat spectral indices. Our results are consistent with a scenario of highly-efficient turbulence induced by merger phenomena

    Absolute Calibration of the Radio Astronomy Flux Density Scale from 22 to 43 GHz using Planck

    Get PDF
    The Planck mission detected hundreds of extragalactic radio sources at frequencies from 28 to 857 GHz. Since Planck's calibration is absolute, based on the satellite's annual motion around the Sun, and since its beams are well-characterized at the sub-percent levels, Planck's flux density measurements are absolute to percent-level accuracy. We have made coordinated Planck, VLA and ATCA observations of ~60 strong, unresolved sources in order to compare Planck's absolute calibration to that used by these two interferometers at 22, 28 and 43 GHz. The flux densities of the sources used to calibrate the VLA observations are taken from Perley and Butler (2013), which is fundamentally based on models of the planet Mars calibrated via WMAP observations. The flux densities of the sources used to calibrate the ATCA observations are based on models of the planet Uranus. Despite the scatter introduced by the variability of many of the sources, the three flux density scales are determined to agree to 1-2% accuracy. <P /

    HerMES: Candidate Gravitationally Lensed Galaxies and Lensing Statistics at Submillimeter Wavelengths

    Get PDF
    We present a list of 13 candidate gravitationally lensed submillimeter galaxies (SMGs) from 95 square degrees of the Herschel Multi-tiered Extragalactic Survey, a surface density of 0.14\pm0.04deg^{-2}. The selected sources have 500um flux densities (S_500) greater than 100mJy. Gravitational lensing is confirmed by follow-up observations in 9 of the 13 systems (70%), and the lensing status of the four remaining sources is undetermined. We also present a supplementary sample of 29 (0.31\pm0.06deg^{-2}) gravitationally lensed SMG candidates with S_500=80--100mJy, which are expected to contain a higher fraction of interlopers than the primary candidates. The number counts of the candidate lensed galaxies are consistent with a simple statistical model of the lensing rate, which uses a foreground matter distribution, the intrinsic SMG number counts, and an assumed SMG redshift distribution. The model predicts that 32--74% of our S_500>100mJy candidates are strongly gravitationally lensed (mu>2), with the brightest sources being the most robust; this is consistent with the observational data. Our statistical model also predicts that, on average, lensed galaxies with S_500=100mJy are magnified by factors of ~9, with apparently brighter galaxies having progressively higher average magnification, due to the shape of the intrinsic number counts. 65% of the sources are expected to have intrinsic 500micron flux densities less than 30mJy. Thus, samples of strongly gravitationally lensed SMGs, such as those presented here, probe below the nominal Herschel detection limit at 500 micron. They are good targets for the detailed study of the physical conditions in distant dusty, star-forming galaxies, due to the lensing magnification, which can lead to spatial resolutions of ~0.01" in the source plane.Comment: ApJ in press. 31 pages, 16 figures, 5 tables. This version updated to match accepted versio
    corecore